Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 7(2): 990-998, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38226433

ABSTRACT

Catheter-associated urinary tract infections (CAUTI) are among the most common bacterial infections associated with prolonged hospitalization and increased healthcare expenditures. Despite recent advances in the prevention and treatment of these infections, there are still many challenges remaining, among them the creation of a durable catheter coating, which prevents bacterial biofilm formation. The current work reports on a method of protecting medical tubing endowed with antibiofilm properties. Silicone catheters coated sonochemically with ZnO nanoparticles (NPs) demonstrated excellent antibiofilm effects. Toward approval by the European Medicines Agency, it was realized that the ZnO coating would not withstand the regulatory requirements of avoiding dissolution for 14 days in artificial urine examination. Namely, after exposure to urine for 14 days, the coating amount was reduced by 90%. Additional coatings with either carbon or silica maintained antibiofilm activity against Staphylococcus aureus while resisting dissolution in artificial urine for 14 days (C- or SiO2-protected catheters exhibited only 29% reduction). HR-SEM images of the protected catheters indicate the presence of the ZnO coating as well as the protective layer. Antibiofilm activity of all catheters was evaluated both before and after exposure to artificial urine. It was shown that before artificial urine exposure, all coated catheters showed high antibiofilm properties compared to the uncoated control. Exposure of ZnO-coated catheters, without the protective layer, to artificial urine had a significant effect exhibited by the decrease in antibiofilm activity by almost 2 orders of magnitude, compared to unexposed catheters. Toxicity studies performed using a reconstructed human epidermis demonstrated the safety of the improved coating. Exposure of the epidermis to ZnO catheter extracts in artificial urine affects tissue viability compared with control samples, which was not observed in the case of ZnO NPs coating with SiO2 or C. We suggest that silica and carbon coatings confer some protection against zinc ions release, improving ZnO coating safety.


Subject(s)
Bathroom Equipment , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Silicon Dioxide/pharmacology , Biofilms , Anti-Bacterial Agents/pharmacology , Catheters , Carbon
2.
Polymers (Basel) ; 15(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37688234

ABSTRACT

Biomass fillers offer the possibility to modify the mechanical properties of foams, increasing their cost-effectiveness and reducing their carbon footprint. In this study, bio-based PU (soft, open cells for the automotive sector) and epoxy (EP, hard, closed cells for construction applications) composite foams were prepared by adding pristine and laccase-mediated lauryl gallate-hydrophobized hemp protein particles as filler (HP and HHP, respectively). The fillers were able to modify the density, the mechanical properties and the morphology of the PU and EP foams. The addition of HP filler increases the density of PU foams up to 100% and significantly increases the σ values by 40% and Emod values. On the other hand, the inclusion of the HHP as filler in PU foams mostly results in reduced density, by almost 30%, and reduced σ values in comparison with reference and HP-filled foams. Independently from filler concentration and type, the biomass increased the Emod values for all foams relative to the reference. In the case of the EP foams, the tests were only conducted for the foams filled with HHP due to the poor compatibility of HP with the EP matrix. HHP decreased the density, compressive strength and Emod values of the composites. For both foams, the fillers increased the size of the cells, while reducing the amount of open cells of PU foams and the amount of closed cells for EP foams. Finally, both types of foams filled with HHP reduced the moisture uptake by 80 and 45%, respectively, indicating the successful hydrophobization of the composites.

3.
Ultrason Sonochem ; 98: 106499, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37393854

ABSTRACT

As the most abundant renewable aromatic polymer on the planet, lignin is gaining growing interest in replacing petroleum-based chemicals and products. However, only <5 % of industrial lignin waste is revalorized in its macromolecular form as additives, stabilizing agents or dispersant and surfactants. Herein, revalorization of this biomass was achieved by implementing an environmentally-friendly continuous sonochemical nanotransformation to obtain highly concentrated lignin nanoparticles (LigNPs) dispersions for added-value material applications. With the aim to further model and control a large-scale ultrasound-assisted lignin nanotransformation, a two-level factorial design of experiment (DoE) was implemented varying the ultrasound (US) amplitude, flow rate, and lignin concentration. Size and polydispersity measurements together with the UV-Vis spectra of lignin recorded at different time intervals of sonication allowed to monitor and understand the sonochemical process on a molecular level. The light scattering profile of sonicated lignin dispersions showed a significant particle size reduction in the first 20 min, followed by moderate particle size decrease below 700 nm until the end of the 2 h process. The response surface analysis (RSA) of the particle size data revealed that the lignin concentration and sonication time were the most important factors to achieve smaller NPs. From a mechanistic point of view, a strong impact of the particle-particle collisions due to sonication seems to be responsible for the decrease in particle size and homogenization of the particle distribution. Unexpectedly, a strong interaction between the flow rate and US amplitude on the particle size and nanotransformation efficiency was observed, yielding smaller LigNPs at high amplitude and low flow rate or vice versa. The data derived from the DoE were used to model and predict the size and polydispersity of the sonicated lignin. Furthermore, the use of the NPs spectral process trajectories calculated from the UV-Vis spectra showed similar RSA model as the dynamic light scattering (DLS) data and will potentially allow the in-line monitoring of the nanotransformation process.

4.
ACS Sens ; 8(8): 3032-3042, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37467113

ABSTRACT

Health initiatives worldwide demand affordable point-of-care devices to aid in the reduction of morbidity and mortality rates of high-incidence infectious and noncommunicable diseases. However, the production of robust and reliable easy-to-use diagnostic platforms showing the ability to quantitatively measure several biomarkers in physiological fluids and that could in turn be decentralized to reach any relevant environment remains a challenge. Here, we show the particular combination of paper-microfluidic technology, electrochemical transduction, and magnetic nanoparticle-based immunoassay approaches to produce a unique, compact, and easily deployable multiplex device to simultaneously measure interleukin-8, tumor necrosis factor-α, and myeloperoxidase biomarkers in sputum, developed with the aim of facilitating the timely detection of acute exacerbations of chronic obstructive pulmonary disease. The device incorporates an on-chip electrochemical cell array and a multichannel paper component, engineered to be easily aligned into a polymeric cartridge and exchanged if necessary. Calibration curves at clinically relevant biomarker concentration ranges are produced in buffer and artificial sputum. The analysis of sputum samples of healthy individuals and acutely exacerbated patients produces statistically significant biomarker concentration differences between the two studied groups. The device can be mass-produced at a low cost, being an easily adaptable platform for measuring other disease-related target biomarkers.


Subject(s)
Microfluidics , Nanoparticles , Humans , Sputum , Point-of-Care Systems , Biomarkers/analysis
5.
Pharmaceutics ; 15(6)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37376166

ABSTRACT

Chronic wounds (CWs) are a growing issue for the health care system. Their treatment requires a synergic approach to reduce both inflammation and the bacterial burden. In this work, a promising system for treating CWs was developed, comprising cobalt-lignin nanoparticles (NPs) embedded in a supramolecular (SM) hydrogel. First, NPs were obtained through cobalt reduction with phenolated lignin, and their antibacterial properties were tested against both Gram-negative and Gram-positive strains. The anti-inflammatory capacity of the NPs was proven through their ability to inhibit myeloperoxidase (MPO) and matrix metalloproteases (MMPs), which are enzymes involved in the inflammatory process and wound chronicity. Then, the NPs were loaded in an SM hydrogel based on a blend of α-cyclodextrin and custom-made poly(ether urethane)s. The nano-enabled hydrogel showed injectability, self-healing properties, and linear release of the loaded cargo. Moreover, the SM hydrogel's characteristics were optimized to absorb proteins when in contact with liquid, suggesting its capacity to uptake harmful enzymes from the wound exudate. These results render the developed multifunctional SM material an interesting candidate for the management of CWs.

6.
J Colloid Interface Sci ; 646: 576-586, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37210905

ABSTRACT

Pseudomonas aeruginosa bacteria originate severe infections in hospitalized patients and those with chronic debilitating diseases leading to increased morbidity and mortality, longer hospitalization and huge financial burden to the healthcare system. The clinical relevance of P. aeruginosa infections is increased by the capability of this bacterium to grow in biofilms and develop multidrug resistant mechanisms that preclude conventional antibiotic treatments. Herein, we engineered novel multimodal nanocomposites that integrate in the same entity antimicrobial silver nanoparticles (NPs), the intrinsically antimicrobial, but biocompatible biopolymer chitosan, and the anti-infective quorum quenching enzyme acylase I. Acylase present in the NPs specifically degraded the signal molecules governing bacterial cell-to-cell communication and inhibited by âˆ¼ 55 % P. aeruginosa biofilm formation, while the silver/chitosan template altered the integrity of bacterial membrane, leading to complete eradication of planktonic bacteria. The innovative combination of multiple bacteria targeting modalities resulted in 100-fold synergistic enhancement of the antimicrobial efficacy of the nanocomposite at lower and non-hazardous towards human skin cells concentrations, compared to the silver/chitosan NPs alone.


Subject(s)
Anti-Infective Agents , Chitosan , Metal Nanoparticles , Humans , Pseudomonas aeruginosa , Chitosan/pharmacology , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms
7.
Antioxidants (Basel) ; 12(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36829991

ABSTRACT

Acne is a common chronic skin condition with serious physical and psychosocial consequences. In some cases, the appearance of pimples, whiteheads, or blackheads on the face, neck, and back may lead to scarring, disfiguring, depression, frustration, and anxiety in patients. Current treatments rely on antibiotics to eradicate Cutibacterium acnes (C. acnes), the bacterium responsible for this skin condition. However, these approaches do not scavenge the reactive oxidative species (ROS) generated during disease development and raise concerns about the increase in antimicrobial resistance. In this study, an environmentally friendly and cost-effective self-assembly nanoencapsulation technology based on zein, a bio-based hydrophobic protein, was employed to produce multifunctional essential oil (EO)-loaded nanocapsules (NCs) with superior antioxidant and bactericidal activity toward C. acnes. The NCs displayed "smart" release of the active cargo only under the conditions that were conducive to acne proliferation on skin. Once incorporated into creams, the EO-loaded NCs led to a complete inhibition of C. acnes and demonstrated the capacity to scavenge ROS, thus preventing damage to human skin cells. The in vitro permeation studies revealed that the nanoformulated EO was able to penetrate through the epidermis, indicating its potential for the treatment of skin diseases, such as acne.

8.
Antibiotics (Basel) ; 12(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36830221

ABSTRACT

Biofilms are a global health concern responsible for 65 to 80% of the total number of acute and persistent nosocomial infections, which lead to prolonged hospitalization and a huge economic burden to the healthcare systems. Biofilms are organized assemblages of surface-bound cells, which are enclosed in a self-produced extracellular polymer matrix (EPM) of polysaccharides, nucleic acids, lipids, and proteins. The EPM holds the pathogens together and provides a functional environment, enabling adhesion to living and non-living surfaces, mechanical stability, next to enhanced tolerance to host immune responses and conventional antibiotics compared to free-floating cells. Furthermore, the close proximity of cells in biofilms facilitates the horizontal transfer of genes, which is responsible for the development of antibiotic resistance. Given the growing number and impact of resistant bacteria, there is an urgent need to design novel strategies in order to outsmart bacterial evolutionary mechanisms. Antibiotic-free approaches that attenuate virulence through interruption of quorum sensing, prevent adhesion via EPM degradation, or kill pathogens by novel mechanisms that are less likely to cause resistance have gained considerable attention in the war against biofilm infections. Thereby, nanoformulation offers significant advantages due to the enhanced antibacterial efficacy and better penetration into the biofilm compared to bulk therapeutics of the same composition. This review highlights the latest developments in the field of nanoformulated quorum-quenching actives, antiadhesives, and bactericides, and their use as colloid suspensions and coatings on medical devices to reduce the incidence of biofilm-related infections.

9.
Pharmaceutics ; 14(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36559153

ABSTRACT

Efficient wound healing is feasible when the dressing materials simultaneously target multiple factors causing wound chronicity, such as deleterious proteolytic and oxidative enzymes and bacterial infection. Herein, entirely bio-based multifunctional self-assembled hydrogels for wound healing were developed by simply mixing two biopolymers, thiolated hyaluronic acid (HA-SH) and silk fibroin (SF), with lignin-based nanoparticles (NPs) as both structural and functional elements. Sono-enzymatic lignin modification with natural phenolic compounds results in antibacterial and antioxidant phenolated lignin nanoparticles (PLN) capable of establishing multiple interactions with both polymers. These strong and dynamic polymer-NP interactions endow the hydrogels with self-healing and shear-thinning properties, and pH-responsive NP release is triggered at neutral to alkaline pH (7-9). Despite being a physically crosslinked hydrogel, the material was stable for at least 7 days, and its mechanical and functional properties can be tuned depending on the polymer and NP concentration. Furthermore, human skin cells in contact with the nanocomposite hydrogels for 7 days showed more than 93% viability, while the viability of clinically relevant Staphylococcus aureus and Pseudomonas aeruginosa was reduced by 99.7 and 99.0%, respectively. The hydrogels inhibited up to 52% of the activity of myeloperoxidase and matrix metalloproteinases, responsible for wound chronicity, and showed a strong antioxidant effect, which are crucial features promoting wound healing.

10.
Nanoscale Adv ; 4(21): 4447-4469, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36341306

ABSTRACT

Lignin, one of the most abundant biopolymers on earth, has been traditionally considered a low-value by-product of the pulp and paper industries. This renewable raw material, besides being a source of valuable molecules for the chemical industry, also has antioxidant, UV-absorbing, and antibacterial properties in its macromolecular form. Moreover, lignin in the form of nanoparticles (LigNPs) presents advantages over bulk lignin, such as higher reactivity due to its larger surface-to-volume ratio. In view of the rapid surge of antimicrobial resistance (AMR), caused by the overuse of antibiotics, continuous development of novel antibacterial agents is needed. The use of LigNPs as antibacterial agents is a suitable alternative to conventional antibiotics for topical application or chemical disinfectants for surfaces and packaging. Besides, their multiple and unspecific targets in the bacterial cell may prevent the emergence of AMR. This review summarizes the latest developments in antibacterial nano-formulated lignin, both in dispersion and embedded in materials. The following roles of lignin in the formulation of antibacterial NPs have been analyzed: (i) an antibacterial active in nanoformulations, (ii) a reducing and capping agent for antimicrobial metals, and (iii) a carrier of other antibacterial agents. Finally, the review covers the inclusion of LigNPs in films, fibers, hydrogels, and foams, for obtaining antibacterial lignin-based nanocomposites for a variety of applications, including food packaging, wound healing, and medical coatings.

11.
ACS Appl Bio Mater ; 5(11): 5181-5189, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36260814

ABSTRACT

The potential of ionic liquids (ILs) to be used as antimicrobial agents for biomedical applications has been hindered by the fact that most of them are cytotoxic toward mammalian cells. Understanding the mechanism of bacterial and mammalian cellular damage of ILs is key to their safety design. In this work, we evaluate the antimicrobial activity and mode of action of several ILs with varying anions and cations toward the clinically relevant Gram-negative Escherichia coli. Langmuir monolayer technique was used to evaluate if the IL's mode of action was related to the bacterial cell membrane interaction for an effective E. coli killing. 1-Decyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [DMIM][TFSI] and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P6,6,6,14][TFSI] were surface-active and induced bacterial cell lysis, through a membrane-disruption phenomenon on bacteria, in a mechanism that was clearly related to the long alkyl chains of the cation. 1-Ethyl-3-methylimidazolium hydrogen sulfate [EMIM][HSO4] was highly antimicrobial toward E. coli and found suitable for biological applications since it was harmless to mammalian cells at most of the tested concentrations. The results suggest that the imidazolium cation of the ILs is mostly responsible not only for their antimicrobial activity but also for their cytotoxicity, and the inclusion of different anions may tailor the ILs' biocompatibility without losing the capacity to kill bacteria, as is the case of [EMIM][HSO4]. Importantly, this IL was found to be highly antimicrobial even when incorporated in a polymeric matrix.


Subject(s)
Ionic Liquids , Animals , Ionic Liquids/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anions/pharmacology , Cations/pharmacology , Imides/pharmacology , Mammals
12.
Int J Mol Sci ; 23(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36232983

ABSTRACT

Providing clean drinking water is a great challenge worldwide, especially for low-income countries where the access to safe water is limited. During the last decade, new biotechnological approaches have been explored to improve water management. Among them, the use of antimicrobial nanoparticles for designing innovative centralized and decentralized (point-of-use) water treatment systems for microbial decontamination has received considerable attention. Herein, antimicrobial lignin capped silver nanoparticles (AgLNP) were embedded on residual cork pieces using high-intensity ultrasound coupled with laccase-mediated grafting to obtain biofunctionalized nanomaterial. The developed AgLNP-coated cork proved to be highly efficient to drastically reduce the number of viable Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus in liquid medium. Additionally, the coated-cork was characterized using FTIR-ATR spectroscopy and SEM imaging, and further used as a filter bed in a point-of-use device for water disinfection. The constructed water filtering system significantly reduced the amount of viable E. coli and resistant Bacillus cereus spores from filtered water operating at increasing residence times of 1, 4, 6, 16, 24, and 48 h. Therefore, the presented results prove that the obtained cork-based antimicrobial nanocomposite material could be used as a filtering medium for the development of water filtration system to control pathogen dissemination.


Subject(s)
Anti-Infective Agents , Drinking Water , Metal Nanoparticles , Water Purification , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Disinfection/methods , Escherichia coli , Laccase , Lignin , Metal Nanoparticles/chemistry , Silver/chemistry , Silver/pharmacology , Water Purification/methods
13.
ACS Appl Bio Mater ; 5(10): 4803-4813, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36166595

ABSTRACT

This work aimed at the antimicrobial functionalization of 3D-printed polymer-infiltrated biomimetic ceramic networks (PICN). The antimicrobial properties of the polymer-ceramic composites were achieved by coating them with human- and environmentally safe silver nanoparticles trapped in a phenolated lignin matrix (Ag@PL NPs). Lignin was enzymatically phenolated and used as a biobased reducing agent to obtain stable Ag@PL NPs, which were then formulated in a silane (γ-MPS) solution and deposited to the PICN surface. The presence of the NPs and their proper attachment to the surface were analyzed with spectroscopic methods (FTIR and Raman) and X-ray photoelectron spectroscopy (XPS). Homogeneous distribution of 13.4 ± 3.2 nm NPs was observed in the transmission electron microscopy (TEM) images. The functionalized samples were tested against Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria, validating their antimicrobial efficiency in 24 h. The bacterial reduction of S. aureus was 90% in comparison with the pristine surface of PICN. To confirm that the Ag-functionalized PICN scaffold is a safe material to be used in the biomedical field, its biocompatibility was demonstrated with human fibroblast (BJ-5ta) and keratinocyte (HaCaT) cells, which was higher than 80% in both cell lines.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Humans , Staphylococcus aureus , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Polymers/pharmacology , Lignin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Printing, Three-Dimensional
14.
ACS Appl Mater Interfaces ; 14(33): 37270-37279, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35960019

ABSTRACT

In recent years, lignin has drawn increasing attention for different applications due to its intrinsic antibacterial and antioxidant properties, coupled with biodegradability and biocompatibility. However, chemical modification or combination with metals is usually required to increase its antimicrobial functionality and produce biobased added-value materials for applications wherein bacterial growth should be avoided, such as biomedical and food industries. In this work, a sonoenzymatic approach for the simultaneous functionalization and nanotransformation of lignin to prepare metal-free antibacterial phenolated lignin nanoparticles (PheLigNPs) is developed. The grafting of tannic acid, a natural phenolic compound, onto lignin was achieved by an environmentally friendly approach using laccase oxidation upon the application of high-intensity ultrasound to rearrange lignin into NPs. PheLigNPs presented higher antibacterial activity than nonfunctionalized LigNPs and phenolated lignin in the bulk form, indicating the contribution of both the phenolic content and the nanosize to the antibacterial activity. Studies on the antibacterial mode of action showed that bacteria in contact with the functionalized NPs presented decreased metabolic activity and high levels of reactive oxygen species (ROS). Moreover, PheLigNPs demonstrated affinity to the bacterial surface and the ability to cause membrane destabilization. Antimicrobial resistance studies showed that the NPs did not induce resistance in pathogenic bacteria, unlike traditional antibiotics.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanoparticles , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Bacteria , Laccase/chemistry , Lignin/chemistry , Lignin/pharmacology , Metal Nanoparticles/chemistry , Nanoparticles/chemistry
15.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012396

ABSTRACT

Current procedures for the assessment of chronic wound infection are time-consuming and require complex instruments and trained personnel. The incidence of chronic wounds worldwide, and the associated economic burden, urge for simple and cheap point-of-care testing (PoCT) devices for fast on-site diagnosis to enable appropriate early treatment. The enzyme myeloperoxidase (MPO), whose activity in infected wounds is about ten times higher than in non-infected wounds, appears to be a suitable biomarker for wound infection diagnosis. Herein, we develop a single-component foldable paper-based device for the detection of MPO in wound fluids. The analyte detection is achieved in two steps: (i) selective immunocapture of MPO, and (ii) reaction of a specific dye with the captured MPO, yielding a purple color with increasing intensity as a function of the MPO activity in infected wounds in the range of 20-85 U/mL. Ex vivo experiments with wound fluids validated the analytic efficiency of the paper-based device, and the results strongly correlate with a spectrophotometric assay.


Subject(s)
Body Fluids , Wound Infection , Colorimetry , Coloring Agents , Humans , Paper , Point-of-Care Testing , Wound Infection/diagnosis
16.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35886883

ABSTRACT

Multidrug antimicrobial resistance is a constantly growing health care issue associated with increased mortality and morbidity, and huge financial burden. Bacteria frequently form biofilm communities responsible for numerous persistent infections resistant to conventional antibiotics. Herein, novel nanoparticles (NPs) loaded with the natural bactericide farnesol (FSL NPs) are generated using high-intensity ultrasound. The nanoformulation of farnesol improved its antibacterial properties and demonstrated complete eradication of Staphylococcus aureus within less than 3 h, without inducing resistance development, and was able to 100% inhibit the establishment of a drug-resistant S. aureus biofilm. These antibiotic-free nano-antimicrobials also reduced the mature biofilm at a very low concentration of the active agent. In addition to the outstanding antibacterial properties, the engineered nano-entities demonstrated strong antiviral properties and inhibited the spike proteins of SARS-CoV-2 by up to 83%. The novel FSL NPs did not cause skin tissue irritation and did not induce the secretion of anti-inflammatory cytokines in a 3D skin tissue model. These results support the potential of these bio-based nano-actives to replace the existing antibiotics and they may be used for the development of topical pharmaceutic products for controlling microbial skin infections, without inducing resistance development.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Biofilms , Drug Resistance, Multiple , Farnesol/pharmacology , Humans , Microbial Sensitivity Tests , SARS-CoV-2 , Staphylococcal Infections/drug therapy , Staphylococcus aureus
17.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35886980

ABSTRACT

The emergence of antibiotic resistant bacteria coupled with the shortage of efficient antibacterials is one of the most serious unresolved problems for modern medicine. In this study, the nano-hybridization of the clinically relevant antibiotic, gentamicin, with the bacterial pro-pathological cell-to-cell communication-quenching enzyme, acylase, is innovatively employed to increase its antimicrobial efficiency against Pseudomonas aeruginosa planktonic cells and biofilms. The sonochemically generated hybrid gentamicin/acylase nano-spheres (GeN_AC NSs) showed a 16-fold improved bactericidal activity when compared with the antibiotic in bulk form, due to the enhanced physical interaction and disruption of the P. aeruginosa cell membrane. The nano-hybrids attenuated 97 ± 1.8% of the quorum sensing-regulated virulence factors' production and inhibited the bacterium biofilm formation in an eight-fold lower concentration than the stand-alone gentamicin NSs. The P. aeruginosa sensitivity to GeN_AC NSs was also confirmed in a real time assay monitoring the bacterial cells elimination, using a quartz crystal microbalance with dissipation. In protein-enriched conditions mimicking the in vivo application, these hybrid nano-antibacterials maintained their antibacterial and antibiofilm effectiveness at concentrations innocuous to human cells. Therefore, the novel GeN_AC NSs with complementary modes of action show potential for the treatment of P. aeruginosa biofilm infections at a reduced antibiotic dosage.


Subject(s)
Pseudomonas aeruginosa , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Biofilms , Gentamicins/pharmacology , Humans
18.
Drug Deliv Transl Res ; 12(8): 1881-1894, 2022 08.
Article in English | MEDLINE | ID: mdl-35359261

ABSTRACT

In diabetic patients, the presence of neuropathy, peripheral vascular diseases and ischemia, leads to the formation of foot ulcerations with a higher risk of infection because the normal response to bacterial infection is missing. In the aim to control and treat diabetic foot ulcerations (DFUs), wound dressings that are able to absorb exudate, to prevent infections, and to promote wound healing are needed. For this reason, the aim of the present research was to synthetize a biocompatible hydrogel (called HyDrO-DiAb) composed of carboxymethylcellulose loaded with silver nanoparticles (AgNPs) for the treatment of diabetic foot ulcers. In this study, AgNPs were obtained by a green synthesis and, then, were dissolved in a CMC hydrogel that, after a freeze drying process, becomes a flexible and porous structure. The in vitro and in ex vivo wound healing activity of the obtained HyDrO-DiAb hydrogel was evaluated.


Subject(s)
Diabetic Foot , Metal Nanoparticles , Humans , Hydrogels/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Wound Healing
19.
Biosens Bioelectron ; 209: 114243, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35421671

ABSTRACT

Chronic wounds represent an important healthcare challenge in developed countries, being wound infection a serious complication with significant impact on patients' life conditions. However, there is a lack of methods allowing an early diagnosis of infection and a right decision making for a correct treatment. In this context, we propose a novel methodology for the electrical monitoring of infection biomarkers in chronic wound exudates, using nanoporous alumina membranes. Lysozyme, an enzyme produced by the human immune system indicating wound infection, is selected as a model compound to prove the concept. Peptidoglycan, a component of the bacterial layer and the native substrate of lysozyme, is immobilized on the inner walls of the nanochannels, blocking them both sterically and electrostatically. The steric blocking is dependent on the pore size (20-100 nm) and the peptidoglycan concentration, whereas the electrostatic blocking depends on the pH. The proposed analytical method is based on the electrical monitoring of the steric/electrostatic nanochannels unblocking upon the specific degradation of peptidoglycan by lysozyme, allowing to detect the infection biomarker at 280 ng/mL levels, which are below those expected in wounds. The low protein adsorption rate and thus outstanding filtering properties of the nanoporous alumina membranes allowed us to discriminate wound exudates from patients with both sterile and infected ulcers without any sample pre-treatment usually indispensable in most diagnostic devices for analysis of physiological fluids. Although size and charge effects in nanochannels have been previously approached for biosensing purposes, as far as we know, the use of nanoporous membranes for monitoring enzymatic cleavage processes, leading to analytical systems for the specific detection of the enzymes has not been deeply explored so far. Compared with previously reported methods, our methodology presents the advantages of no need of neither bioreceptors (antibodies or aptamers) nor competitive assays, low matrix effects and quantitative and rapid analysis at the point-of-care, being also of potential application for the determination of other protease biomarkers.


Subject(s)
Biosensing Techniques , Wound Infection , Aluminum Oxide/chemistry , Biomarkers , Biosensing Techniques/methods , Humans , Muramidase , Peptidoglycan , Wound Infection/diagnosis
20.
Z Naturforsch C J Biosci ; 77(7-8): 297-302, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35191282

ABSTRACT

Point of care testing (PoCT) devices permit precise and rapid detection of disease-related biomarkers contributing to an early disease diagnosis and administration of an appropriate treatment. The enzyme myeloperoxidase (MPO) is a relevant biomarker for infection and inflammation events assessment; however its direct electrochemical quantification is hindered by the limited accessibility to the iron atom in its active center. Herein, such hindrance of the MPO biomolecule is overcome using the redox mediator 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The charge involved in the electrochemical reduction of the MPO-oxidized ABTS is correlated with the concentration of MPO. The use of ABTS allowed for the electrochemical assessment of a wide range of MPO concentrations (10-1000 nM) including those reported for wound infections, chronic obstructive pulmonary disease and early adverse cardiac events. The developed electroanalytical approach is rapid and inexpensive, and thus suitable for implementation in PoCT devices.


Subject(s)
Coloring Agents , Peroxidase , Biomarkers , Oxidation-Reduction , Peroxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...